

Applied Academy

H-76 Sec 22

APPLICATION OF TRIGO, CIRCLE AND STATS

Class 10 - Mathematics

1. If the mean and the mode of a distribution are 17 and 20 respectively, then the median of the distribution, using empirical formula, is: [1]

a) $\frac{31}{3}$
b) 17
c) 20
d) 18

2. The algebraic sum of the deviations of a frequency distribution from its mean is: [1]

a) 0
b) a non-zero number
c) always positive
d) always negative

3. If the mean of data is 27 and its median is 33 then the mode is [1]

a) 43
b) 45
c) 30
d) 47

4. Compute the mode for the following frequency distribution: [1]

Size of items (in cm)	0-4	4-8	8-12	12-16	16-20	20-24	24-28
Frequency	5	7	9	17	12	10	6

5. Find the mode of the following distribution: [1]

Classes:	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40
Frequency:	45	30	75	20	35	15

6. While calculating the mean of a given data by the assumed-mean method, the following values were obtained: $A = 25$, $\sum f_i d_i = 110$, $\sum f_i = 50$. Find the mean. [1]

7. Find the mode of the following data: [2]

Class	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency	9	12	20	11	10

8. For the following data, find mode: [2]

Class	10 - 13	13 - 16	16 - 19	19 - 22	22 - 25
Frequency	4	8	9	11	7

9. Following table shows the weight of 12 students: [2]

Weight (in kgs):	67	70	72	73	75
Number of students:	4	3	2	2	1

Find the mean weight of the students.

10. Find the mean of the following distribution:

Classes	0 - 15	15 - 30	30 - 45	45 - 60	60 - 75	75 - 90
Frequency	17	20	18	21	15	9

11. Given below is the frequency distribution of the heights of players in a school

Height(in cm)	160 - 162	163 - 165	166 - 168	169 - 171	172 - 174
Number of students	15	118	142	127	18

Find the modal height and interpret it.

12. The arithmetic mean of the following frequency distribution is 25.

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	16	p	30	32	14

Find the value of p.

13. If the median of the following distribution is 58 and sum of all frequencies is 140. Find the values of x and y.

Variable	15-25	25-35	35-45	45-55	55-65	65-75	75-85	85-95
Frequency	8	10	x	25	40	y	15	7

14. If the mean of the following frequency distribution is 24, find the value of p.

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	3	4	p	3	2

15. Find the mean of the following frequency distribution :

Class :	0-6	6-12	12-18	18-24	24-30	30-36	36-42
Frequency :	10	11	7	4	4	3	1

16. Find the mean of the following data and hence, find the mode', given that median of the data is 42.5.

Class Interval	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Frequency	4	8	10	12	10	4	2

17. Find the mean of the following frequency distribution, using the assumed-mean method:

Class	100 - 120	120 - 140	140 - 160	160 - 180	180 - 200
Frequency	10	20	30	15	5

18. The marks obtained out of 50, by 101 students in a Physics test are given in the frequency table below:

Marks (x)	15	20	22	24	25	30	33	38	45
Frequency (f)	5	8	8	20	23	18	13	3	3

Find the average number of marks.

19. Calculate the median from the following distribution:

Class	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45
Frequency	5	6	15	10	5	4	2	2

20. Find the value of p, if the mean of the following distribution is 18.

x		f
---	--	---

[2]

[2]

[3]

[3]

[3]

[3]

[3]

[5]

13	8
15	2
17	3
19	4
20 + p	5p
23	6

21. Calculate the median from the following frequency distribution: [5]

Class	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45
Frequency	5	6	15	10	5	4	2	2

22. The monthly income of 100 families are given as below:

Income in (in ₹.)	Number of families
0-5000	8
5000-10000	26
10000-15000	41
15000-20000	16
20000-25000	3
25000-30000	3
30000-35000	2
35000-40000	1

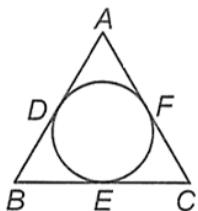
Calculate the modal income.

23. Find the mean of the following frequency distribution: [5]

Class	5 - 15	15 - 25	25 - 35	35 - 45	45 - 55	55 - 65
Frequency	6	11	21	23	14	5

24. The following table gives the marks obtained by 50 students in a class test: [5]

Marks	11 - 15	16 - 20	21 - 25	26 - 30	31 - 35	36 - 40	41 - 45	46 - 50
Number of students	2	3	6	7	14	12	4	2


Calculate the mean and median for the above data.

25. The following table shows the ages of the patients admitted in a hospital during a year: [5]

Age (in years)	5 - 15	15 - 25	25 - 35	35 - 45	45 - 55	55 - 65
Number of patients	6	11	21	23	14	5

Find the mode and mean of the data given above.

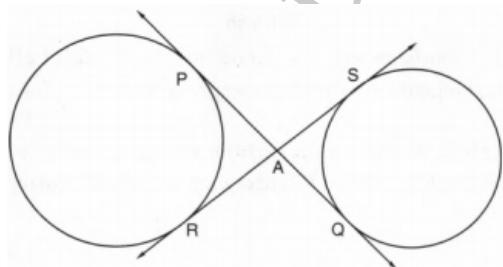
26. From an external point Q, the length of tangent to a circle is 12 cm and the distance of Q from the centre of circle is 13 cm. The radius of circle (in cm) is [1]

29. An isosceles triangle ABC, with $AB = AC$, circumscribes a circle, touching BC at P, AC at Q and AB at R. [1]

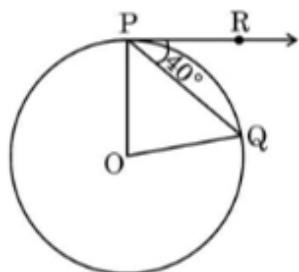
a) 22 cm b) 25 cm
c) 18 cm d) 20 cm

29. An isosceles triangle ABC, with $AB = AC$, circumscribes a circle, touching BC at P, AC at Q and AB at R. [1]
Prove that the contact point P bisects BC.

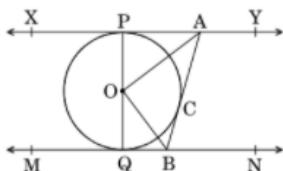
30. From an external point C, k tangents can be drawn to the circle. Find the value of k. [1]


31. If tangents PA and PB from an external point P to a circle with centre O are inclined to each other at an angle of 70° , then find $\angle POA$. [1]

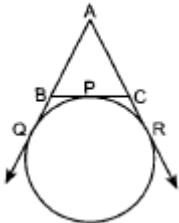
32. Two concentric circles are of radii 6.5 cm and 2.5 cm. Find the length of the chord of the larger circle which touches the smaller circle. [2]


33. If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60° then find the length of OP. [2]

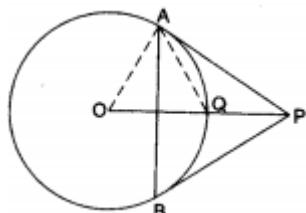
34. Let s denote the semi perimeter of a triangle ABC in which $BC = a$, $CA = b$ and $AB = c$. If a circle touches the sides BC, CA, AB at D, E, F respectively, prove that [2]
 $AF = AE = s - a$, $BD = BF = s - b$ and $CD = CE = s - c$.


35. In fig common tangents PQ and RS to two circles intersect at A. Prove that $PQ = RS$. [2]

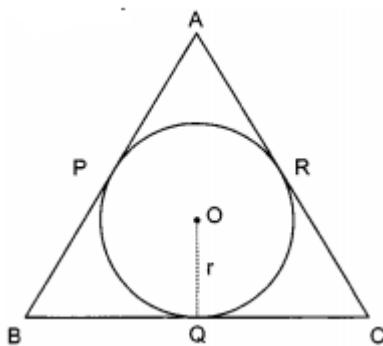
36. If O is the centre of a circle, PQ is a chord and the tangent PR at P makes an angle of 40° with PQ, then find the measure of $\angle POQ$. [2]



37. In the figure, XY and MN are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and MN at B. Prove that $\angle AOB = 90^\circ$. [3]

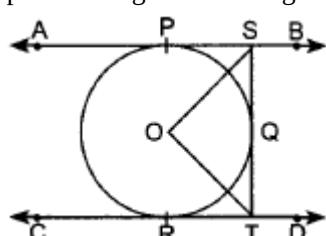

38. If the sides of a quadrilateral touch a circle, prove that the sum of a pair of opposite sides is equal to the sum of the other pair. [3]

39. In figure, a circle touches the side BC of $\triangle ABC$ at P and touches AB and AC produced at Q and R respectively. If $AQ = 5$ cm, find the perimeter of $\triangle ABC$. [3]



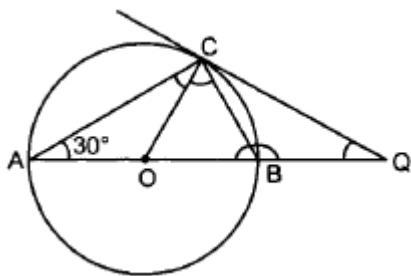
40. If radii of the two circles are equal, prove that $AB = CD$ where AB and CD are common tangents. [3]

41. From a point P, two tangents PA and PB are drawn to a circle C(O r). If $OP = 2r$, show that $\triangle APB$ is equilateral. [3]


42. In figure the sides AB, BC and CA of triangle ABC touch a circle with centre O and radius r at P, Q and R respectively. [5]

Prove that:

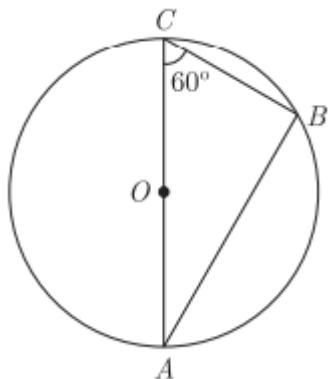
- $AB + CQ = AC + BQ$
- $\text{Area}(\Delta ABC) = \frac{1}{2}(\text{Perimeter of } \Delta ABC) \times r$


43. In figure AB and CD are two parallel tangents to a circle with centre O. ST is tangent segment between the two parallel tangents touching the circle at Q. Show that $\angle SOT = 90^\circ$ [5]

44. ABCD is a cyclic trapezium with $AD \parallel BC$. If $\angle B = 70^\circ$, determine other three angles of the trapezium. [5]

45. Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines. [5]

46. In the figure, AB is diameter of a circle with centre O and QC is a tangent to the circle at C. If $\angle CAB = 30^\circ$, find $\angle CQA$ and $\angle CBA$. [5]



47. **Assertion (A):** If in a circle, the radius of the circle is 3 cm and the distance of a point from the centre of a circle is 5 cm, then length of the tangent will be 4 cm. [1]

Reason (B): $(\text{hypotenuse})^2 = (\text{base})^2 + (\text{height})^2$

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.

48. **Assertion (A):** In the given figure, O is the centre of a circle and AT is a tangent at point A, then $\angle BAT = 60^\circ$ [1]

Reason (R): A straight line can meet a circle at one point only.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.

49. A tree casts a shadow 7 m long on the ground, when the angle of elevation of the Sun is 45° . The height of the tree is: [1]

- a) 3.5 m
- b) $7\sqrt{3}$ m
- c) 7 m
- d) $\frac{7}{3}\sqrt{3}$ m

50. If the height of a tower is half the height of the flagstaff on it and the angle of elevation of the top of the tower as seen from a point on the ground is 30° , then the angle of elevation of the top of the flagstaff as seen from the same point is [1]

- a) 30°
- b) 60°
- c) 45°
- d) 15°

51. The angle of elevation of the top of a tower at a point on the ground 50 m away from the foot of the tower is 45° . [1] Then the height of the tower (in metres) is

- a) $\frac{50}{\sqrt{2}}$
- b) $\frac{50}{\sqrt{3}}$

c) $50\sqrt{3}$

d) 50

52. At some time of the day the length of the shadow of a tower is equal to its height. Find the sun's altitude at that time. [1]

53. An observer 1.5 m tall is 28.5 m away from a tower. The angle of elevation of the top of the tower from her eyes is 45° . What is the height of the tower? [1]

54. From the top of a tower 50 m high the angles of depression of the top and bottom of a pole are observed to be 45° and 60° respectively. Find the height of the pole. [1]

55. The angle of depression of a car, standing on the ground, from the top of a 75 m high tower is 30° . What is the distance of the car from the base of the tower? [2]

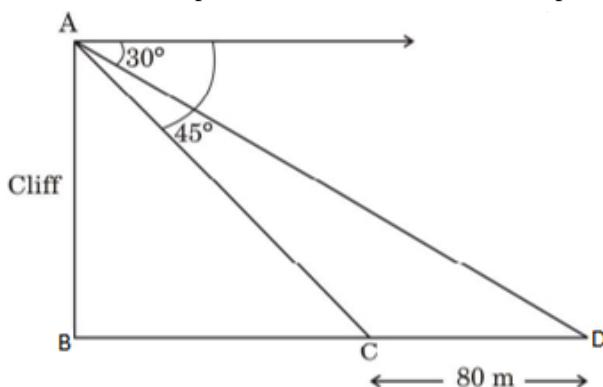
56. A ladder is placed along a wall of a house such that its upper end is touching the top of the wall. The foot of the ladder is 2 m away from the wall and the ladder is making an angle of 60° with the level of the ground. Determine the height of the wall. [2]

57. From a point on a bridge across a river the angles of depression of the banks on opposite side of the river are 30° and 45° respectively. If bridge is at the height of 30 m from the banks, find the width of the river. [2]

58. From the top of light house, 40 m above the water, the angle of depression of a small boat is 60° . Find the distance of boat from foot of light house. [2]

59. The shadow of a tower standing on a plane level is found to be 50 m longer when Sun's elevation is 30° , when it is 60° , find the height of the tower. [2]

60. The angle of elevation of a jet plane from a point A on the ground is 60° . After a flight of 30 seconds, the angle of elevation changes to 30° . If the jet plane is flying at a constant height of $3600\sqrt{3}$ m, find the speed of the jet plane. [3]


61. An observer 1.5m tall is 30m away from a chimney. The angle of elevation of the top of the chimney from his eye is 60° . Find the height of the chimney. [3]

62. A tower subtends an angle α at a point A in the plane of its base and the angle of depression of the foot of the tower at a point B which is at 'b' meters above A is β .
Prove that the height of the tower is $b \tan \alpha \cot \beta$. [3]

63. From the top of a building AB, 60m high, the angles of depression of the top and bottom of a vertical lamp-post CD are observed to be 30° and 60° respectively. Find the difference between the heights of the building and the lamp-post. [3]

64. The angle of elevation of a cloud from a point 200 m above the lake is 30° and the angle of depression of its reflection in the lake is 60° , find the height of the cloud above the lake. [3]

65. Two boats are sailing in the sea 80 m apart from each other towards a cliff AB. The angles of depression of the boats from the top of the cliff are 30° and 45° respectively, as shown in Figure. Find the height of the cliff. [3]

66. From the top of a tower h metre high, the angles of depression of two objects, which are in the line with the foot of the tower are α and β ($\beta > \alpha$). Find the distance between the two objects. [5]

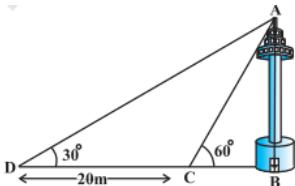
67. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60° . From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° . Find the height of the tower and the width of the canal.

68. A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that $\frac{p}{q} = \frac{\cos \beta - \cos \alpha}{\sin \alpha - \sin \beta}$. [5]

69. From a point on the ground, the angle of elevation of the bottom and top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower. (Use $\sqrt{3} = 1.73$) [5]

70. A vertical tower stands on a horizontal plane and is surmounted by a flag-staff of height 7 m. From a point on the plane, the angle of elevation of the bottom of the flagstaff is 30° and that of the top of the flag-staff is 45° . Find the height of the tower. [5]

71. The angles of elevation and depression of the top and bottom of a light-house from the top of a 60 m high building are 30° and 60° respectively. Find [5]


- the difference between the heights of the light-house and the building.
- the distance between the light-house and the building.

72. The angle of elevation of a stationery cloud from a point 2500 m above a lake is 15° and the angle of depression of its reflection in the lake is 45° . What is the height of the cloud above the lake level? [5]

73. If the angle of elevation of a cloud from a point h metres above a lake is α and the angle of depression of its reflection in the lake is β , prove that the height of the cloud is $\frac{h(\tan \beta + \tan \alpha)}{\tan \beta - \tan \alpha}$ [5]

74. Two poles of equal heights are standing opposite to each other on either side of the road which is 80 m wide. From a point P between them on the road, the angle of elevation of the top of a pole is 60° and the angle of depression from the top of the other pole of point P is 30° . Find the heights of the poles and the distance of the point P from the poles. [5]

75. From a point P on the ground, the angle of elevation of the top of a 15 m tall building is 30° . A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from P is 45° . Find the length of the flagstaff and the distance of the building from the point P. (Use $\sqrt{3} = 1.732$) [5]

