

Applied Academy

H-76 Sec 22

AP AND CIRCLES

Class 10 - Mathematics

18. Let a sequence be defined by $a_1 = 3$, $a_n = 3a_{n-1} + 1$ for all $n > 1$. Find the first four terms of the sequence. [2]

19. The first term of an A.P. is - 7 and the common difference 5. Find its 18th term and the general term. [2]

20. Find the 15th term of an AP whose first term is 17 and fourth term is 44. [2]

21. Find the 12th term from the end of the A.P. - 2, - 4, - 6, ..., - 100. [2]

22. The cost of digging a well after every metre of digging, when it costs ₹ 150 for the first metre and rises by ₹ 50 for each subsequent metre. Is this situation make an arithmetic progression and why? [3]

23. A man saved ₹33000 in 10 months. In each month after the first, he saved ₹100 more than he did in the preceding month. How much did he save in the first month? [3]

24. Prove that the 11th term of an A.P. cannot be $n^2 + 1$. Justify your answer. [3]

25. Find n if the given value of x is the nth term of the given A.P. $1, \frac{21}{11}, \frac{31}{11}, \frac{41}{11}, \dots, x = \frac{171}{11}$ [3]

26. If the sum of a certain number of terms starting from first term of an A.P. is 25, 22, 19,..., is 116. Find the last term. [3]

27. Which term of the AP : 3, 15, 27, 39, will be 132 more than its 54th term? [3]

28. For what value of n, are the nth terms of two APs: 63, 65, 67, and 3, 10, 17, equal? [3]

29. An AP 8,10,12, ... has 60 terms. Find its last term. Hence, find the sum of its last 10 terms. [3]

30. The sum of first n terms of three AP's are S_1 , S_2 and S_3 . The first term of each AP is unity and their common difference is 1, 2 and 3, respectively. [3]

Prove that $S_1 + S_3 = 2 \times S_2$.

31. The common difference of an A.P. is -2. Find its sum, if first term is 100 and last term is -10. [3]

32. Find the sum of the integers between 100 and 200 that are not divisible by 9. [Hint : These numbers will be : Total numbers – Total numbers divisible by 9] [5]

33. Find the sum of all integers between 100 and 550, which are divisible by 9. [5]

34. Find the sum of all integers between 84 and 719, which are multiples of 5. [5]

35. Find the sum of the integers between 100 and 200 that are divisible by 9? [5]

36. The cost of digging a well for the first metre is ₹150 and rises by ₹20 for each succeeding metre. Does this situation make an arithmetic progression and why? [5]

37. Let there be an A.P. with first term 'a', common difference 'd'. If a_n denotes its nth term and S_n the sum of first n terms, find. n and S_n , if $a = 5$, $d = 3$ and $a_n = 50$. [5]

38. Solve the equation: $-4 + (-1) + 2 + 5 + \dots + x = 437$. [5]

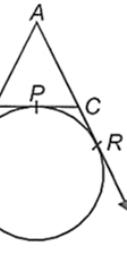
39. The sum of first m terms of an AP is $(4m^2 - m)$. If its nth term is 107, find the value of n. Also, find the 21st term of this AP. [5]

40. **Assertion (A):** If nth term of an A.P. is $7 - 4n$, then its common difference is -4. [1]

Reason (R): Common difference of an A.P. is given by $d = a_{n-1} - a_n$

a) Both A and R are true and R is the correct explanation of A. b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false. d) A is false but R is true.


41. A tangent to a circle is a line that touches the circle at: [1]

a) three points b) one point only

42. From a point P which is at a distance 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is [1]

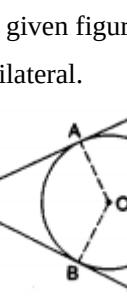
a) 65 cm^2 b) 32.5 cm^2
 c) 30 cm^2 d) 60 cm^2

43. In the given figure, a circle touches the side BC of $\triangle ABC$ at P and touches AB and AC produced at Q and R respectively. If $AQ = 5 \text{ cm}$, then find the perimeter of $\triangle ABC$. [1]

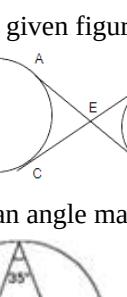
a) 6 cm b) 10 cm
 c) 7 cm d) 11 cm

44. The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is [1]

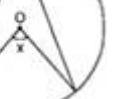
a) 5 cm b) $\sqrt{7} \text{ cm}$
 c) 10 cm d) $2\sqrt{7} \text{ cm}$

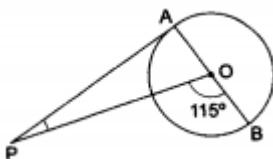

45. If a line intersects a circle in two distinct points, what is it called? [1]

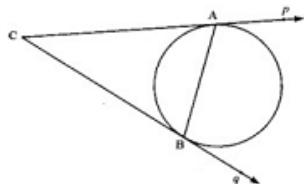
46. A circle is inscribed in $\triangle ABC$ touching AB, BC and AC at P, Q and R respectively. If $AB = 10 \text{ cm}$, $AR = 7 \text{ cm}$ and $CR = 5 \text{ cm}$, find the length of BC. [1]

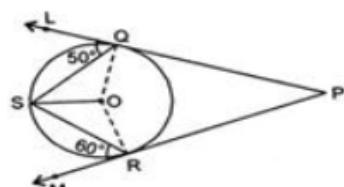

47. Distance between two parallel lines is 14 cm. Find the radius of the circle which will touch both the lines. [1]

48. XY and PQ are two tangents drawn at the end points of the diameter AB of a circle. Prove that $XY \parallel PQ$. [1]

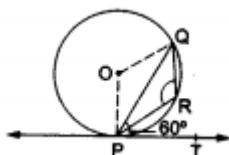

49. In the given figure, O is the centre of the circle. PA and PB are tangents. Show that AOBP is a cyclic quadrilateral. [2]


50. In the given figure, common tangents AB and CD to two circles intersect at E. Prove that $AB = CD$. [2]

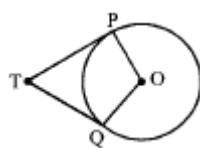

51. Find an angle marked as x in given figure where O is the centre of the circle:- [2]


52. In the given figure, PA is a tangent from an external point P to a circle with centre O. If $\angle POB = 115^\circ$, find $\angle APO$. [2]

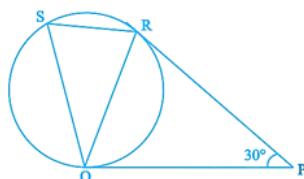
53. Prove that the tangents drawn at the end of a chord of a circle make equal angle with the chord. [2]


54. In figure, PQL and PRM are tangents to the circle with centre O at the points Q and R respectively and S is a point on the circle such that $\angle SQL = 50^\circ$ and $\angle SRM = 60^\circ$. Then, find $\angle QSR$. [2]

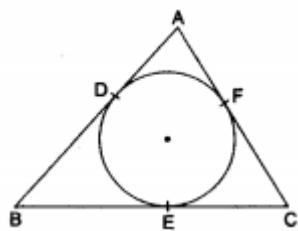
55. O is the centre of a circle of radius 8 cm. The tangent at a point A on the circle cuts a line through O at B such that $AB = 15$ cm. Find OB . [2]


56. A quadrilateral $ABCD$ is drawn to circumscribe a circle. Prove that $AB + CD = AD + BC$ [2]

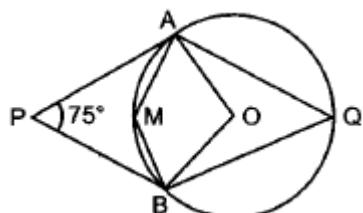
57. In the given figure, PQ is a chord of a circle with centre O and PT is a tangent. If $\angle QPT = 60^\circ$, find $\angle PRQ$. [2]


58. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre. [2]

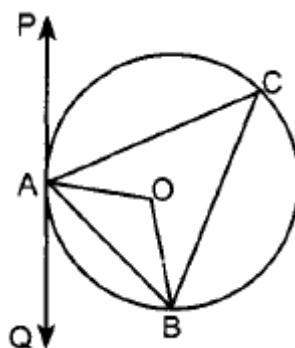
59. In the adjoining figure, TP and TQ are tangents to the circle with centre O such that $\angle POQ = 110^\circ$. Then find $\angle PTQ$. [3]

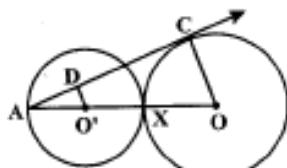

60. In the given figure, tangents PQ and PR are drawn to a circle such that $\angle RPQ = 30^\circ$. A chord RS is drawn parallel to tangent PQ . Find the $\angle RQS$. [3]

Hint: Draw a line through Q and perpendicular to QP .]



61. Two tangent segments PA and PB are drawn to a circle with centre O such that $\angle APB = 120^\circ$. Prove that $OP = 2AP$. [3]

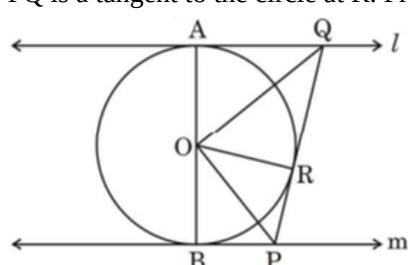

62. In the given figure, a circle inscribed in a triangle ABC , touches the sides AB , BC and AC at points D , E and F respectively. If $AB = 12$ cm, $BC = 8$ cm and $AC = 10$ cm, find the lengths of AD , BE and CF . [3]


63. In the given figure, O is the centre of the circle. Determine $\angle AQB$ and $\angle AMB$, if PA and PB are tangents [3]

64. PAQ is a tangent to the circle with centre O at a point A as shown in figure. If $\angle OBA = 35^\circ$, find the value of $\angle BAQ$ and $\angle ACB$. [3]

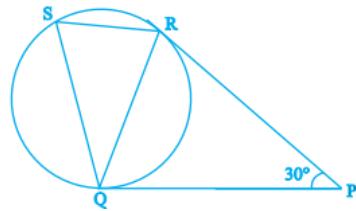
65. Equal circles with centres O and O' touch each other at X. OO' produced to meet a circle with centre O', at A. AC is a tangent to the circle whose centre is O. O'D is perpendicular to AC. Find the value of $\frac{DO'}{CO}$. [3]

66. A point P is 13 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 12 cm. Find the radius of the circle. [3]


67. If two tangents are drawn to a circle from an external point, show that they subtend equal angles at the centre. [3]

68. The two tangents from an external point P to a circle with centre O are PA and PB. If $\angle APB = 70^\circ$, what is the value of $\angle AOB$? [3]

69. In a right triangle ABC in which $\angle B = 90^\circ$, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P. Prove that the tangent to the circle at P bisects BC. [5]


70. QR is the tangent to the circle whose centre is P. If $QA \parallel RP$ and AB is the diameter, prove that RB is a tangent to the circle. [5]

71. In Figure, the tangent l is parallel to the tangent m drawn at points A and B respectively to a circle centred at O. PQ is a tangent to the circle at R. Prove that $\angle POQ = 90^\circ$. [5]

72. Tangents PQ and PR are drawn to a circle such that $\angle RPQ = 30^\circ$. A chord RS is drawn parallel to tangent PQ. Find $\angle RQS$. [5]

Hint : Draw a line through Q and perpendicular to QP.

73. In a right triangle ABC in which $\angle B = 90^\circ$, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P. Prove that the tangent to the circle at P bisects BC. [5]

74. In Figure, a right triangle ABC in which $\angle B = 90^\circ$, AB = 12 cm and BC = 5 cm is shown. Find the radius of the circle inscribed in the triangle ABC. [5]

75. **Assertion (A):** A tangent to a circle is perpendicular to the radius through the point of contact. [1]

Reason (R): The lengths of tangents drawn from the external point to a circle are equal.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.